水果机技巧-水果机网页版

學術信息

首頁

學術報告:Two-Stage Quadratic Games under Uncertainty and their Solution by Progressive Hedging Algorithms

報告時間:2019年9月23日(周一) 16:00-17:00

報告地點:北辰校區(qū)西教五416

報告題目Two-Stage Quadratic Games under Uncertainty and their Solution by Progressive Hedging Algorithms

報告嘉賓:張敏 副研究員(中國科學院新疆生態(tài)與地理研究所)

 

報告摘要

A model of a two-stage N-person noncooperative game under uncertainty is studied, in which at the first stage each player solves a quadratic program parameterized by other players' decisions and then at the second stage the player solves a recourse quadratic program parameterized by the realization of a random vector, the second-stage decisions of other players, and the first-stage decisions of all players. The problem of finding a Nash equilibrium of this game is shown to be equivalent to a stochastic linear complementarity problem. A linearly convergent progressive hedging algorithm is proposed for finding a Nash equilibrium if the resulting complementarity problem is monotone. For the nonmonotone case, it is shown that, as long as the complementarity problem satisfies an additional elicitability condition, the progressive hedging algorithm can be modified to find a local Nash equilibrium at a linear rate. The elicitability condition is reminiscent of the sufficient second-order optimality condition in nonlinear programming. Various numerical experiments indicate that the progressive hedging algorithms are efficient for mid-sized problems. In particular, the numerical results include a comparison with the best response method that is commonly adopted in the literature.

.

嘉賓介紹

張敏,副研究員,于2018年底入選中國科學院百人計劃C類,在中國科學院新疆生態(tài)與地理研究所工作。本、碩、博均畢業(yè)于天津大學,本科專業(yè)為數(shù)學與應用數(shù)學專業(yè),并輔修了計算機科學與技術專業(yè)雙學位,于2010年獲得理學學士與工學學士學位。2010-2016年在天津大學數(shù)學系運籌學與控制論專業(yè)碩博連讀,并于2014年獲得國家基金委資助,以聯(lián)合培養(yǎng)博士生的身份公派赴澳大利亞科廷大學進行為期一年的學習。20166月于天津大學獲得博士學位,同年8月至20196月在澳大利亞科廷大學跟隨國際著名的優(yōu)化專家孫捷教授做博士后,主要研究方向為隨機變分不等式、逐步對沖算法和稀疏優(yōu)化,曾參與國家自然科學基金項目3項,在SIAM Journal of Optimization,  IEEE Transaction on Information Theory, Applied Mathematics and ComputationSCI期刊上發(fā)表論文12篇。


百家乐官网路单破解器| 百家乐香港六合彩| 百家乐官网软件| 百家乐龙虎台布| 百家乐官网是不是有技巧| 沙龙百家乐赌场娱乐网规则| 沙河市| 百家乐咋个玩的| 百家乐官网号论坛博彩正网| 大发888娱乐城好么| 博天堂百家乐官网官网| 利来百家乐的玩法技巧和规则 | 大赢家娱乐城| 百家乐赌博信息| 百家乐网络赌城| 神人百家乐赌场| 豪门百家乐官网的玩法技巧和规则 | 总统娱乐城返水| 百家乐博彩通博彩网皇冠网澳门赌场真人赌博 | 大发888是真的吗| 新濠百家乐娱乐城 | 新全讯网xb112| 易学24山3d罗盘App| 百家乐官网投注程式| 大发888合作伙伴| 赌百家乐2号破解| 豪华百家乐人桌| 大发888网站多少| 鼎尚百家乐的玩法技巧和规则| 百家乐桌现货| 任你博百家乐的玩法技巧和规则| 威尼斯人娱乐老| 网上百家乐解码器| 什么是百家乐官网的大路| 百家乐官网2号干扰| 荣成市| 札达县| 利高娱乐城| 澳门赌场图片| 南昌市| 百家乐官网怎样发牌|