水果机技巧-水果机网页版

學術信息

首頁

學術報告:Two-Stage Quadratic Games under Uncertainty and their Solution by Progressive Hedging Algorithms

報告時間:2019年9月23日(周一) 16:00-17:00

報告地點:北辰校區(qū)西教五416

報告題目Two-Stage Quadratic Games under Uncertainty and their Solution by Progressive Hedging Algorithms

報告嘉賓:張敏 副研究員(中國科學院新疆生態(tài)與地理研究所)

 

報告摘要

A model of a two-stage N-person noncooperative game under uncertainty is studied, in which at the first stage each player solves a quadratic program parameterized by other players' decisions and then at the second stage the player solves a recourse quadratic program parameterized by the realization of a random vector, the second-stage decisions of other players, and the first-stage decisions of all players. The problem of finding a Nash equilibrium of this game is shown to be equivalent to a stochastic linear complementarity problem. A linearly convergent progressive hedging algorithm is proposed for finding a Nash equilibrium if the resulting complementarity problem is monotone. For the nonmonotone case, it is shown that, as long as the complementarity problem satisfies an additional elicitability condition, the progressive hedging algorithm can be modified to find a local Nash equilibrium at a linear rate. The elicitability condition is reminiscent of the sufficient second-order optimality condition in nonlinear programming. Various numerical experiments indicate that the progressive hedging algorithms are efficient for mid-sized problems. In particular, the numerical results include a comparison with the best response method that is commonly adopted in the literature.

.

嘉賓介紹

張敏,副研究員,于2018年底入選中國科學院百人計劃C類,在中國科學院新疆生態(tài)與地理研究所工作。本、碩、博均畢業(yè)于天津大學,本科專業(yè)為數(shù)學與應用數(shù)學專業(yè),并輔修了計算機科學與技術專業(yè)雙學位,于2010年獲得理學學士與工學學士學位。2010-2016年在天津大學數(shù)學系運籌學與控制論專業(yè)碩博連讀,并于2014年獲得國家基金委資助,以聯(lián)合培養(yǎng)博士生的身份公派赴澳大利亞科廷大學進行為期一年的學習。20166月于天津大學獲得博士學位,同年8月至20196月在澳大利亞科廷大學跟隨國際著名的優(yōu)化專家孫捷教授做博士后,主要研究方向為隨機變分不等式、逐步對沖算法和稀疏優(yōu)化,曾參與國家自然科學基金項目3項,在SIAM Journal of Optimization,  IEEE Transaction on Information Theory, Applied Mathematics and ComputationSCI期刊上發(fā)表論文12篇。


新全讯网网站112| 澳门玩百家乐的玩法技巧和规则 | 百家乐官网家| 全讯网下载| 362百家乐官网的玩法技巧和规则 大集汇百家乐官网的玩法技巧和规则 | 威尼斯人娱乐城演唱会| 百家乐官网稳赚的方法| 中国德州扑克比赛| 手机百家乐官网能兑换现金棋牌游戏| 瑞丰国际娱乐| 南非太阳城皇宫酒店| 百家乐官网游戏机博彩正网| 百家乐软件官方| 百家乐真人游戏赌场娱乐网规则 | 百家乐官网缆法排行榜| 百家乐官网视频游365| 怎样玩百家乐赢钱| 专业百家乐官网筹码| 太阳城娱乐总站| 金百家乐博彩公司| 百家乐官网连跳规律| 太阳城申博娱乐| 菲律宾百家乐开户| 路单百家乐官网的玩法技巧和规则 | 皇冠网| 百家乐论坛官网| 做生意什么花招财| 百家乐桌小| 重庆百家乐官网的玩法技巧和规则 | 雅加达百家乐的玩法技巧和规则 | 百家乐赌博彩| 做生意适合摆放龙龟吗| 百家乐官网国际娱乐平台| 北京百家乐官网网上投注| 百家乐开闲的几率多大| 金城百家乐玩法平台| 蒙特卡罗网上娱乐| 大发888官方爱好| 关于百家乐概率的书| 拜城县| 9人百家乐桌布|