報告題目:Thermodynamically consistent phase-field modelling and energy law preserving computational methods for two-phase flows and moving contact line problems
報告時間:2019年6月28日(星期五)10:00
報告地點:北辰校區理學院西教五307
報告嘉賓:林平 教授 (University of Dundee英國鄧迪大學)
報告簡介:We develop a phase-field model for the binary incompressible (quasi-incompressible) fluid with thermocapillary effects, which allows for the different properties (densities, viscosities and heat conductivities) of each fluid component while maintaining thermodynamic consistency. The governing equations of the model including the Navier-Stokes equations with additional stress terms, Cahn-Hilliard equations and energy balance equation are derived within a thermodynamic framework based on entropy generation, which guarantees thermodynamic consistency. A sharp-interface limit analysis is carried out to show that the interfacial conditions of the classical sharp-interface models can be recovered from our phase-field model. Energy law preserving finite element methods are developed for the variable density case. The modelling and computational method are also applied to moving contact line problems. A few illustrative computational examples will be presented as well.
嘉賓簡介:Ping Lin, 1984年南京大學數學學士,1987年南京大學應用數學碩士并留校任教。1991年赴加并于1995年獲加拿大不列顛哥倫比亞大學應用數學博士學位。博士論文獲1994年美國工業與應用數學學會(SIAM)博士生論文獎并特邀在SIAM年會作50分鐘邀請報告。1996年赴美在斯坦福大學應用力學系及計算機系做博士后研究。1998年下旬在倫斯勒理工短暫停留后,1999年1月開始在新加坡國立大學數學系擔任助理教授,后升為副教授,教授。2007年開始擔任英國鄧迪(Dundee)大學科學工程學院數值分析/計算數學教授;2010年,擔任北京科技大學兼職教授。主要從事應用數學與科學工程計算,計算材料、計算物理、流體力學和圖像處理等交叉學科研究。