水果机技巧-水果机网页版

學術信息

首頁

學術報告:Sparse composite quantile regression with consistent parameter tuning in ultrahigh dimensions

報告題目:Sparse composite quantile regression with consistent parameter tuning in ultrahigh dimensions

報告時間:  201878日(周日)10:0011:00

報告地點:北辰校區理學院(西教五)416

報告嘉賓:Dr.Yuwen GuUniversity of Connecticut

 

Abstract: Composite quantile regression (CQR) provides efficient estimation of the coefficients in linear models, regardless of the error distributions. We consider penalized CQR for both variable selection and efficient coefficient estimation in a linear model under ultrahigh dimensionality and possibly heavy-tailed error distribution. Both lasso and folded concave penalties are discussed. An L2 risk bound is derived for the lasso estimator to establish its estimation consistency and strong oracle property of the folded concave penalized CQR is shown for a feasible solution via the LLA algorithm. The nonsmooth nature of the penalized CQR poses great numerical challenges for high-dimensional data. We provide a unified and effective numerical optimization algorithm for computing penalized CQR via alternating direction method of multipliers (ADMM). We demonstrate the superior efficiency of penalized CQR estimator, as compared to the penalized least squares estimator, through simulated data under various error distributions. For folded concave penalized quantile regression, we also show consistent parameter tuning using a high-dimensional BIC type information criterion. Simulation studies are carried out to show its superior finite-sample performance.

嘉賓簡介:Dr. Yuwen Gu is now an assistant professor in the Department of Statistics at the University of Connecticut. He received his PhD in Statistics from the University of Minnesota in 2017. Dr. Gu’s research interests include high-dimensional statistical inference, variable selection, model combination, nonparametric statistics, causal inference, and large-scale optimization. His current research projects study several non-standard regression techniques for high-dimensional data analysis. These methods have unique advantages over the standard least squares regression and have applications in large-scale data that exhibit heterogeneity or heavy tails. He is also working on applications of statistical learning and causal inference methods in social and economic data.

 

德州扑克 英文| 东方夏威夷娱乐| 百家乐官网庄闲排| 威尼斯人娱乐城 2013十一月九问好| 澳门百家乐官网要注意啥| 网上百家乐游戏哪家信誉度最好| 百家乐官网代理商博彩e族| 战神百家乐娱乐城| 百家乐最稳妥的打法| 百家乐官网博彩通博彩网皇冠网澳门赌场真人赌博| 威尼斯人娱乐城最新网址| 缅甸百家乐官网赌城| 百家乐官网有不有作弊| 黔西县| 威尼斯人娱乐平台注册网址 | 太阳城代理最新网址| 大发888亚洲游戏下载| 百家乐自动下注| 五张百家乐官网的玩法技巧和规则 | 波音百家乐官网现金网投注平台排名导航 | 电子百家乐官网技巧| 新锦江百家乐官网娱乐场| 百家乐官网乐翻天| 金世豪百家乐官网的玩法技巧和规则| 百家乐庄闲点数| 百家乐官网博娱乐场开户注册 | 怎么看百家乐走势| E乐博百家乐官网娱乐城| 娱乐城注册送28| 188金宝博| 大发888客户端| 大发888娱乐场888| 全讯网官网| 星空棋牌官方下载| 云顶国际娱乐开户| 百家乐官网心得打法| 百家乐官网庄家出千内幕| 真人百家乐官网网西陆| 百家乐官网讯特| 天天百家乐官网的玩法技巧和规则| 适合属虎做生意的名字|