水果机技巧-水果机网页版

學術信息

首頁

學術報告:Dissolvable Tattoo Electronics for Biomedicine

 

報告題目:柔性可降解醫療傳感器

報告時間201751815:00

報告地點:電氣工程學院一樓報告廳

報 告 人:程寰宇

 

嘉賓簡介

程寰宇,美國賓州州立大學助理教授,本科和博士分別畢業于清華和美國西北大學。主要研究方向包括柔性電子、瞬態電子器件,發表核心期刊論文60余篇,擔任50余個國際知名期刊審稿人,兩個國際期刊編委,Computers in Biology and Medicine副主編。獲得榮譽包括2015Dorothy Quiggle冠名教授,2016Global Young Academy2017Forbes 30 Under 30: Science等三十多項。

 

報告摘要

可植入人體內的電子器件不僅可以提供重要生理信號的檢測,同時還可以為包括心臟功能失常等在內的嚴重疾病提供及時治療。然而在第一次植入電子器件后,我們需要再進行第二次手術來取出相關器件。與此同時,傳統的電子器件需要在脆弱的硅片上進行平面加工制造,而這是和人體的復雜曲面不兼容的。為了解決這兩個重要問題,我們設計并制造了具有柔性的醫學器件。這一柔性醫學器件不僅可以穿戴在人體復雜的皮膚表面,而且在完成功能后完全溶解在人體內。結合我們研究小組之前的柔性電子技術,本次講座主要介紹一套可以在人體內溶解的功能材料體系,使得這一新的醫學器件可以被穿戴在人體內部的重要器官上,在它們設定的醫學應用時間內穩定運行,而在此之后可以完全溶解在人體內。

 

 

ABSTRACT:

Recent advances in electronics enable powerful biomedical devices that have greatly reduced therapeutic risks by monitoring vital signals and providing means of treatment.  Implantable devices can help us better understand the behavior and effects of various diseases.  However, an additional procedure is required to remove the device after an initial implantation.  Conventional electronics today form on the planar surfaces of brittle wafer substrates and are not compatible with the complex topology of body tissues.  Therefore, stretchable and absorbable electronics are the two missing links in the design process of implantable monitors and in-vivo therapeutics.  This talk presents the challenges, mechanics, and design strategies, behind a potential medical device that (a) integrates with human physiology, and (b) dissolves completely after its effective operation. Implanted devices will provide a much better understanding of organ functions and offer more time efficient treatments for serious diseases such as heart failure.

 

Biography:

Dr. Huanyu Cheng was appointed an Assistant Professor of Engineering Science and Mechanics (ESM) and Materials Research Institute (MRI) at The Pennsylvania State University in Aug 2015, and was awarded the Dorothy Quiggle Career Development Professor in Sep 2015.  He earned a Ph.D. and a Master’s degree from Northwestern University in 2015 and 2011 respectively, and a Bachelor’s degree from Tsinghua University (China) in 2010.  Prior to joining Penn State, Dr. Cheng also worked as a Visiting Research Fellow with Prof. John A. Rogers at the University of Illinois at Urbana-Champaign on stretchable and transient electronics.  Throughout Dr. Cheng’s research career, he has worked on mechanics design and manufacturing of biologically inspired electronics with applications in robotics, biomedicine, and energy.  Dr. Cheng has co-authored over 50 peer-reviewed publications, and his work has been recognized through the reception of awards including Forbes 30 Under 30 2017 in Science, election to the Global Young Academy, a Haythornthwaite Research Initiation Grant from ASME (2016-2018), Finalist for Forbes 30 Under 30 list in Manufacturing/Industry in 2016, Howard Hughes Medical Institute (HHMI) International Student Research Fellowship, Best Paper Award in ASME Applied Mechanics Division Student Paper Competition, International Institute for Nanotechnology Outstanding Researcher Award, Chinese Government Award for Outstanding Self-financed Students Abroad, and many others.  He also serves as associate editor for Computers in Biology and Medicine, editorial board member for Informatics in Medicine Unlocked, and reviewer for 40 international journals.

 

 

网上百家乐导航| 百家乐五星宏辉怎么玩| 百家乐最好的平台是哪个| 利高国际网上娱乐| 百家乐翻牌规则| 百家乐官网押注方法| E乐博网址| 澳门百家乐网上赌| 百家乐官网稳赢秘笈| 钻石娱乐城| 百家乐透明发牌机| 保时捷百家乐娱乐城| 粤港澳百家乐官网娱乐| 百家乐官网娱乐人物| 大发888最新版本下载| 百家乐购怎么样| 百家乐官网游戏教程| 河东区| 晓游棋牌官方下载| 全讯网娱乐353788| BB百家乐大转轮| 网上百家乐投注技巧| 百家乐官网微笑玩| 网上百家乐官网内幕| 真人百家乐官网信誉| 老k娱乐城| 顶级赌场 官方直营网| 百家乐双峰县| 利都百家乐国际娱乐场| 百家乐怎么赢对子| 百家乐官网号游戏机| 百家乐官网怎么赢博彩正网| 战神国际娱乐平| 金皇冠娱乐城| 大发888官方6222.c| 168棋牌游戏| 华盛顿百家乐的玩法技巧和规则| 百家乐娱乐网会员注册| 百家乐天下第一庄| 百家乐常用公式| 赌场百家乐欺诈方法|