報告題目:柔性可降解醫療傳感器
報告時間:2017年5月18日15:00
報告地點:電氣工程學院一樓報告廳
報 告 人:程寰宇
嘉賓簡介:
程寰宇,美國賓州州立大學助理教授,本科和博士分別畢業于清華和美國西北大學。主要研究方向包括柔性電子、瞬態電子器件,發表核心期刊論文60余篇,擔任50余個國際知名期刊審稿人,兩個國際期刊編委,Computers in Biology and Medicine副主編。獲得榮譽包括2015年Dorothy Quiggle冠名教授,2016年Global Young Academy,2017年Forbes 30 Under 30: Science等三十多項。
報告摘要:
可植入人體內的電子器件不僅可以提供重要生理信號的檢測,同時還可以為包括心臟功能失常等在內的嚴重疾病提供及時治療。然而在第一次植入電子器件后,我們需要再進行第二次手術來取出相關器件。與此同時,傳統的電子器件需要在脆弱的硅片上進行平面加工制造,而這是和人體的復雜曲面不兼容的。為了解決這兩個重要問題,我們設計并制造了具有柔性的醫學器件。這一柔性醫學器件不僅可以穿戴在人體復雜的皮膚表面,而且在完成功能后完全溶解在人體內。結合我們研究小組之前的柔性電子技術,本次講座主要介紹一套可以在人體內溶解的功能材料體系,使得這一新的醫學器件可以被穿戴在人體內部的重要器官上,在它們設定的醫學應用時間內穩定運行,而在此之后可以完全溶解在人體內。
ABSTRACT:
Recent advances in electronics enable powerful biomedical devices that have greatly reduced therapeutic risks by monitoring vital signals and providing means of treatment. Implantable devices can help us better understand the behavior and effects of various diseases. However, an additional procedure is required to remove the device after an initial implantation. Conventional electronics today form on the planar surfaces of brittle wafer substrates and are not compatible with the complex topology of body tissues. Therefore, stretchable and absorbable electronics are the two missing links in the design process of implantable monitors and in-vivo therapeutics. This talk presents the challenges, mechanics, and design strategies, behind a potential medical device that (a) integrates with human physiology, and (b) dissolves completely after its effective operation. Implanted devices will provide a much better understanding of organ functions and offer more time efficient treatments for serious diseases such as heart failure.
Biography:
Dr. Huanyu Cheng was appointed an Assistant Professor of Engineering Science and Mechanics (ESM) and Materials Research Institute (MRI) at The Pennsylvania State University in Aug 2015, and was awarded the Dorothy Quiggle Career Development Professor in Sep 2015. He earned a Ph.D. and a Master’s degree from Northwestern University in 2015 and 2011 respectively, and a Bachelor’s degree from Tsinghua University (China) in 2010. Prior to joining Penn State, Dr. Cheng also worked as a Visiting Research Fellow with Prof. John A. Rogers at the University of Illinois at Urbana-Champaign on stretchable and transient electronics. Throughout Dr. Cheng’s research career, he has worked on mechanics design and manufacturing of biologically inspired electronics with applications in robotics, biomedicine, and energy. Dr. Cheng has co-authored over 50 peer-reviewed publications, and his work has been recognized through the reception of awards including Forbes 30 Under 30 2017 in Science, election to the Global Young Academy, a Haythornthwaite Research Initiation Grant from ASME (2016-2018), Finalist for Forbes 30 Under 30 list in Manufacturing/Industry in 2016, Howard Hughes Medical Institute (HHMI) International Student Research Fellowship, Best Paper Award in ASME Applied Mechanics Division Student Paper Competition, International Institute for Nanotechnology Outstanding Researcher Award, Chinese Government Award for Outstanding Self-financed Students Abroad, and many others. He also serves as associate editor for Computers in Biology and Medicine, editorial board member for Informatics in Medicine Unlocked, and reviewer for 40 international journals.