報告題目:The CP-matrix completion problem
報告時間:2017年9月8日(周五)9:00-10:00
報告地點(diǎn):西教五416(理學(xué)院)
報告人:范金燕
報告人簡介:
范金燕,上海交通大學(xué)數(shù)學(xué)科學(xué)學(xué)院教授。2002年在中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院獲博士學(xué)位。先后訪問英國劍橋大學(xué)和美國加州大學(xué)圣迭戈分校。主要從事非線性最優(yōu)化的理論和方法研究,在非線性方程組的數(shù)值解法和完全正優(yōu)化方面取得了一系列重要的成果,提出了非線性方程組的高階Levenberg-Marquardt方法和信賴域半徑趨于零的信賴域方法,解決了矩陣領(lǐng)域中的完全正填充問題和完全正分解問題。所指導(dǎo)博士獲2016年全國博士后創(chuàng)新人才計劃。2017年獲第十三屆中國青年女科學(xué)家獎。
報告摘要:
A symmetric matrix $C$ is completely positive (CP) if there exists an entrywise nonnegative matrix $B$ such that $C="BB^T$." The CP-completion problem is to study whether we can assign values to the missing entries of a partial matrix such that the completed matrix is completely positive. In this talk, we propose a semidefinite algorithm for solving general CP-completion problems, and study its properties. When all the diagonal entries are given, the algorithm can give a certificate if a partial matrix is not CP-completable, and it almost always gives a CP-completion if it is CP-completable. When diagonal entries are partially given, similar properties hold. Computational experiments are also presented to show how CP-completion problems can be solved.