美國(guó)南伊利諾伊大學(xué) 羅朝俊 教授學(xué)術(shù)報(bào)告
時(shí)間:2014-12-26
來源:機(jī)械學(xué)院
作者:
點(diǎn)擊量:次
報(bào)告題目: 不連續(xù)動(dòng)力學(xué)系統(tǒng)的理論進(jìn)展與應(yīng)用
報(bào) 告 人: 羅朝俊(美國(guó)南伊利諾伊大學(xué)教授)
報(bào)告時(shí)間: 2014年12月31日下午3:00
地 點(diǎn): 七教D101, 丁字沽校區(qū)東院
報(bào)告簡(jiǎn)介:
The fundamental theory for complex phenomenons in flows of discontinuous dynamical systems, such as singularity, switchability, attractivity, passability to a specific boundary or edge will be introduced based on some important concepts including G-function, domain flow, boundary flow, edge flow, flow barriers, transport laws, bouncing flows, the edge and vertex dynamics, multi-valued vector fields and so on. The singularity and switchability of a flow in discontinuous dynamical systems can be associated with single or more boundaries. The edge dynamics and system interaction are also presented. The interaction of two dynamical systems is treated as a separation boundary, and such a boundary is time-varying. The system synchronization is discussed as an application of the interaction of two dynamical systems. As a practical application, the analytical conditions for motion switchability on the switching boundary in a periodically forced, discontinuous system are developed through the G-function of the vector fields to the switching boundary.
The second illustration example is the discontinuous dynamics of a non-linear, friction-induced, periodically forced oscillator. The analytical conditions for motion switchability at the velocity boundary in such a nonlinear oscillator are developed to understand the motion switching mechanism. Using such analytical conditions of motion switching, numerical predictions of the switching scenarios varying with excitation frequency and amplitude are carried out, and the parameter maps for specific periodic motions are presented. Chaotic and periodic motions are illustrated through phase planes and switching sections for a better understanding of motion mechanism of the nonlinear friction oscillator. The periodic motions with switching in such a nonlinear, frictional oscillator cannot be obtained from the traditional analysis (e.g., perturbation and harmonic balance method).
Introduction to Albert Luo
羅朝俊, 美國(guó)南伊利諾伊大學(xué)愛德華茲維爾校區(qū)(SIUE)終身教授, 非線性動(dòng)力學(xué)系統(tǒng)理論與應(yīng)用領(lǐng)域國(guó)際知名專家,《非線性物理科學(xué)》、《復(fù)雜現(xiàn)象的數(shù)學(xué)方法和建模》、《非線性系統(tǒng)和復(fù)雜性》、《復(fù)雜性,非線性和混沌》英文專著系列叢書主編。擔(dān)任兩個(gè)國(guó)際學(xué)術(shù)刊物的主編(Journal of Applied Nonlinear Dynamics,Communications in Nonlinear Science and Numerical Simulation)和兩個(gè)國(guó)際學(xué)術(shù)刊物的副主編(Journal of Discontinuity, Nonlinearity, and Complexity, ASME Journal of Computational and Nonlinear Dynamics)。
1998年在美國(guó)加州大學(xué)伯克利校區(qū)完成博士后研究,1995年于加拿大曼尼托巴大學(xué)(The University of Manitoba)獲機(jī)械工程專業(yè)博士學(xué)位,1990-1991在香港城市大學(xué)做學(xué)術(shù)訪問,1989年在大連理工大學(xué)獲工程力學(xué)專業(yè)碩士學(xué)位。
主要從事非線性動(dòng)力學(xué)系統(tǒng)的理論和應(yīng)用研究,涉及連續(xù)動(dòng)力學(xué)系統(tǒng)、不連續(xù)動(dòng)力學(xué)系統(tǒng)和離散動(dòng)力學(xué)系統(tǒng)等。
羅朝俊教授為國(guó)際非線性系統(tǒng)領(lǐng)域的知名專家,出版專著13部,發(fā)表期刊論文134篇,會(huì)議論文112篇。2004年獲南伊利諾伊大學(xué)(SIUE)最具成就教授稱號(hào),2007年當(dāng)選為美國(guó)機(jī)械工程師學(xué)會(huì)(ASME-American Society of Mechanical Engineers)會(huì)員,2008年獲南伊利諾伊大學(xué)(SIUE) Paul Simon杰出學(xué)者獎(jiǎng)。